Journal of Organometallic Chemistry, 71 (1974) 159-164 © Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

MERCURY-NITROGEN COMPOUNDS

II*. N-(METHYLMERCURY)TRIS(DIMETHYLAMINO)PHOSPHINE IMIDE, $MeHgNP(NMe,)$ ₃

JORG LORBERTH

Fachbereich Chemie der Philipps-Universität, D-3550 Marcurg/Lahn, Lahnberge (West Germany)

(Received November 12th, 1973)

Summary

Several routes for the synthesis of N -(organomercury) phosphine imides have been investigated; only transamination reactions are satisfactory for preparation of the title compounds in good yields. Spectroscopic data, Raman/IR, ¹ H NMR, ³¹ P NMR and mass spectra, support a monomeric structure for this covalent mercury-nitrogen compound.

Introduction

The chemistry of mercury-nitrogen compounds has recently been reviewed [1], and many interesting structural features have been revealed: among oligomeric species only a few monomeric derivatives are obtained, e.g. $Hg(NR_2)$, $(R^{\prime} = CF_3$ [2], SiMe₃ [3]), RHgNR'₂ (R = Me, Et, R' = SiMe₃ [4]; R = Me, $SCF₃$, $R' = CF₃$ [51) and $RHgN₃$ [4, 6] ($R =$ alkyl, aryl). The well-known affinity of mercury for bonding to nitrogen should also lead to formation of dimeric species with a four membered ring system $(-Hg-N₂)$; suitable choice of substituents at nitrogen and mercury should lead to control of the oligomerisation process.

In some cases simple phosphine imides are dimeric, e.g. $(Cl_3\text{ PNMe})_2$ [7, 8] (PhF₂ PNMe)₂ [9], (PhCl₂ PNMe)₂, (Ph₂ ClPNMe)₂ [10], and X-ray analysis of these compounds has confirmed an almost planar configuration of equally spaced nitrogen and phosphorus atoms, with trigonal-bipyramidal coordination at phosphorus and an overall symmetry of C_{2h} for the molecule [7]. Organometallic phosphine imides $[11]$, obtained in reactions (A) –(D) of the scheme, are monomeric in solution; only for Group IIB elements have ex-

* For Part I, see ref. 4.

ceptions been reported: viz. (RMNPR'₃)₄, with R = Me; M = Zn, Cd; R' = Me, Et [12].

SCHEME

160.

 $R_nMN_3+PR'_3 \rightarrow R_nM-N=PR'_3+N_2$ (A) "Staudinger reaction" mainly for IVB elements

- $R_nM + H-N=PR'_3 \rightarrow R_nM-N=PR'_3 + RH$
Restricted to highly reactive metal alkyls (B)
- $R_nMNR_2'' + H-N=PR_3' \rightarrow R_nM-N=PR_3' + HNR_2''$ (C) Restricted to available amino derivatives of the metal
- (D) $R_nM-Hal+Lin=PR'_3 \rightarrow R_nM-N=PR'_3 + Li-Hal.$ Restricted to available stable N-lithium salts.

Derivatives of zinc and cadmium are tetrameric in solution (and possibly also in the vapour phase) with a suggested cubane structure; we undertook experiments to investigate the coordination chemistry of mercury in its hitherto unknown phosphine imide complexes.

Results and discussion

Of the reactions shown in the scheme, we have tried (A) without success; reactions of $RHgN_3$ in molten PPh₃ or pure, liquid P(NMe₂)₃ in evacuated sealed Carius tubes at elevated temperatures for several hours led to complete decomposition of the mercurials [13]:

 R_3P \rightarrow Hg-metal + Dec. products $RHgN₃$

Reaction (B), which occurs only with strong acids for R_2 Hg (cleavage of an aryl-mercury bond being easier than that of an alkyl-mercury bond) also failed:

 R_2 Hg + H-N=P(NMe₂)₃ $\xrightarrow{\text{T}}$ No reaction

Transaminations of organometallic amides with phosphine imides according to reaction (C) , have been used for the synthesis of (organotin) phosphine imides [14]; the following reaction sequence (3) led to successful preparation of the first organomercury phosphine imide.

 $Me_3 \sin_3 + P(NMe_2)_3 \rightarrow Me_3 \sin=P(NMe_2)_3 + N_2$ Me₃ SiN=P(NMe₂)₃ + i-C₃ H₇ OH $\stackrel{H^*}{\longrightarrow}$ Me₃ SiO-i-C₃ H₇ + HN=P(NMe₂)₃ MeHgN(SiMe₃)₂ + HN=P(NMe₂)₃ \rightarrow MeHgN=P(NMe₂)₃ + HN(SiMe₃)₂ (3)

Compound (I) was distilled as a colourless liquid, b.p. 68-70°/0.01 mm in a 90% yield; the compound crystallizes at about 30-35°, and is sensitive to hydrolysis. The molecular weight in benzene solution corresponds with the monomer. Compound (I) is readily soluble in a variety of organic solvents, but with chlorinated hydrocarbons reaction occurs. The stoichiometry was established by elemental analyses and by spectroscopic methods.

 (1)

 (2)

(a)_ 'HNMR spectrum

The ' **H NMR spectrum in benzene solution, with the correct integration** $(1/6)$ is shown in Fig. 1. Spin-coupling of N-methyl protons with ³¹ P gives rise to a doublet, which is shifted 0.07 ppm downfield compared to $P(NMe₂)₃$ with δ -2.43 ppm. Spin coupling of metal-methyl protons with ¹⁹⁹ Hg produces satellite signals with $J(^{199}$ Hg-CH) 140 Hz; this agrees closely with corresponding **values for other covalent Hg-N-compounds 143. No indication is found for the** dimeric structure $(R_3 P=N-R')_2$ in solution: In this case evidence for an **X, AA'% -spin system should be .provided by the ' H NMR spectrum, as shown** by Schmidbaur et al. $[16]$ for compounds of the type $(Me_3 P = NAR_2)_2$.

161

The ³¹P NMR chemical shift of -33.5 ppm (H_3PO_4 external standard) is in the range reported for four-coordinated phosphorus compounds $P(N)_d$ **[17,18].**

(b). *Mass spectrum*

In the **mass spectrum of (I) shown in Fig. 2, the formation of almost all** fragments can be explained in terms of the metastable transitions listed in Table 1. With maximum amplification, peaks are observed in the high mass **region from m/e 400 to 780, but there is considerable doubt whether these** fragments arise from dimeric (or oligomeric) species of from decomposition **products.**

(c). IR and Raman spectra

IR and Raman spectra (including a polarized spectrum) of the neat liquidare shown in Fig. 3, and tentative assignments are made in Table 2.

Experimental

The spectroscopic equipment used has been described elsewhere [4]. Elemental analysis was performed by A. Bernhardt, Analytical Laboratory, 5251 Elbach über Engelskirchen, GFR. Me₃ SiN₃, P(NMe₂)₃ and MeHgN(SiMe₃)₂ were prepared by published procedures.

(a). $Me₃ SiN=P(NMe₂)₃$

 $Me₃ SiN₃$ (30.8 g, 0.31 mole) was added dropwise to ca. 60 ml (excess) $P(NMe₂)₃$ in a 100 ml flask equipped with magnetic stirrer and condenser; the colourless precipitate initially formed gradually dissolved with evolution of nitrogen. After addition of the azide, stirring was continued for 3 h, and the mixture checked for azide-absorptions by IR. $P(NMe₂)₃$ was removed in vacuo and the oily residue distilled, yielding a colourless, moisture-sensitive liquid, b.p. $95-97^{\circ}/0.1$ mm. Yield 55 g (82%). The product was identified by analysis, IR, ¹ H NMR, and mass spectroscopy.

TABLE 1

METASTABLE TRANSITIONS IN THE MASS SPECTRUM OF MeHgN=P(NMe₂)₃ (I)

^a Only very weakly observed.

Fig. 3. IR and Raman spectra of (I).

TABLE 2

					IR AND RAMAN SPECTRA OF MeHgN=P(NMe ₂) ₃ (cm ⁻¹)		
--	--	--	--	--	---	--	--

þ $\ddot{}$

Äч

(b). $H N = P(NMe₂)₃$.

164

 $Me₃ SiN=P(NMe₂)₃$ (6.75 g, 27 mmole), added to 30 ml i-C₃H₇ OH with $2-5$ drops conc. H_2 SO₄, was distilled at atmospheric pressure with continuous addition during 2 h of another 50 ml alcohol; removal of solvent and distillation yielded a colourless liquid, b.p. $60-62^{\circ}/0.1$ mm. Yield 4.1 g (85%), identified as in (a) .

(c). MeHgN=P(NMe₂)₃

MeHgN(SiMe₃)₂ (6.1 g, 16.2 mmole) and 2.9 g (16.2 mmole) HN=P(NMe₂)₃ were heated from 60-90° for 3 h; evaporation of volatile compounds and distillation yielded a colourless liquid, b.p. 68-70°/0.01 mm, which crystallized at room temperature. Yield 5.8 g (92%). (Found: C, 21.43; H, 5.87; N, 14.06; Hg, 50.68. Mol. wt. (cryoscopically in benzene solution), 334 and 356. Calcd.: C, 21.41; H, 5.35; N, 14.20; Hg, 51.00%. Mol. wt., 392.)

Acknowledgement

Experiments were financed by the Fachbereich Chemie, Philipps-Universität Marburg/Lahn, West Germany. Support was given by Schering AG, Werk Bergkamen and Fonds der Chemischen Industrie e.V., (VCI), whose generosity is gratefully acknowledged.

References

- 1 D. Breitinger and K. Brodersen, Angew. Chem., 82 (1970) 379.
- 2 J.A. Young, S.N. Tsoukalas and R.D. Dresdner, J. Amer. Chem. Soc., 80 (1958) 3604.
- 3 H. Bürger, W. Sawodny and U. Wannagat, J. Organometal. Chem., 3 (1965) 113.
- 4 J. Lorberth and F. Weller, J. Organometal. Chem., 32 (1971) 145.
- 5 R.C. Dobbie and H.J. Emeleus, J. Chem. Soc. A, (1966) 367.
- 6 K. Dehnicke and D. Seybold, J. Organometal. Chem., 11 (1968) 227.
- 7 H. Hess and D. Forst, Z. Anorg. Allg. Chem., 342 (1966) 240.
- 8 L.G. Hoard and R.A. Jacobson, J. Chem. Soc. A, (1966) 1203.
- 9 J.W. Cox and E.R. Corey, Chem. Commun., (1967) 123.
- 10 P.B. Hormuth and H.P. Latscha, Z. Anorg. Allg. Chem., 365 (1969) 26.
- 11 H. Schmidbaur, Advan. Organometal. Chem., 9 (1970) 259.
- 12 H. Schmidbaur and G. Jonas, Chem. Ber., 101 (1968) 1271. 13 J. Lorberth, unpublished results.
- 14 J. Lorberth, H. Krapf and H. Nöth, Chem. Ber., 100 (1967) 3511.
- 15 R.K. Harris, Can. J. Chem., 42 (1964) 2275.
- 16 H. Schmidbaur, W. Wolfsberger and K. Schwirten, Chem. Ber., 102 (1969) 556.
- 17 A. Schmidpeter, C. Weingand and E. Hafner-Roll, Z. Naturforsch. B, 24 (1969) 799.
- 18 A. Schmidpeter and K. Schumann, Z. Naturforsch. B, 25 (1970) 1364.