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MeHgNPWMe2 I3 
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Fachbereich Chemie der PhiZipps-Uniwrsitiif, D-3550 Marburg/lahn, Lahnberge (West 

Germany) 

(Received November l&h, 1973) 

Several routes for the synthesis of N-(organomercury)phospbine imides 
have been investigated; only transamination reactions are satisfactory for pre; 
paration of the title compounds in good yields. Spectroscopic data, Raman/IR, 

1 H NMR, 31 P NMR and mass spectra, support h monomeric structure for thik 
covalent mercury-nitrogen compound. 

Introduction. 

The chemistry of mercury-nitrogen compounds has recently been re- 
viewed [ 11, and many interesting structural features have been revealed, among 
ohgomeric species only a few monomeric derivatives are obtained, e.g, Hg(NRL)2 
(R’ = CF3 [2] ; SiMeJ 133 ), RegNsi (R = Me, Et, R’ = SiMe3 [4] ; R = Me, 
SCFa , R’ = CFB [5] ) and RHgNB .[4,3] (R =. all@, a@). The well-known 
affinity of mercury for bonding to nitrogen should also lead to formation ,of 
dimeric species with a four membered ring system (YHg-NC), ;.suitable. 
choice of substituents at nitrogen and mercury should lead to Control of the 
oligomerisation process. 

In some cases simple phosphine imides are dimeric, e.g. (Cl, PNMe)2 . .~ 
[7,8] (PhF;PNMe), f9], (PhCl, PNMe)*-, (Ph, ClPNMe)2 flo] , and X-ray- 
analysis of these compounds has confirmed an almost planar configuration- of 
equally. spaced nitrogen and phosphorus atoms, with trigonal-bipyramida! .so- 
ordination-at phosphorus arid an overall symmetry of CZk for the ~mohkile. [7 ] . 
Org&omek.lhc-phosphine imides [Xl] ; oi$iig~~.i.n rea&i&s (4 F(B) ‘of, the 
scheme, are monomeric in solution;.only for Group HII3 elements have. ex7 ‘1 : 
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*ForPartI,seeref.4. :: .- :.. 
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: -.ceptions:been.reported: viz. (RMNPR$-)d, with R =.Me; M 2 Zn, Cd; R =. 
.Me;~Et [lZj;-. .. _ :_.:. .-. _. .._ 

,,. .-::,_ .: 

_’ SCHEME. .- 

ei1 R,MN3 + PRj + R,M-N=PR$ + Np 
YStaudinger reaction” mainly for IVB elements 

@) : R&l + FI-NiPI&-, R,&N=PR$ + RH 
.- -Reytricted to highly reactive metal slkyls 

03 R,gR$. + I&I&PR; + R,M-N=PR; + HNR; 
Restricted to available amino derivatives of the metal 

(iI>-. R&f-E& + UN=PR> + R,$+N=PR; + E-FIaI. 
Restricted to available stable N-lithium salts. 

Derivatives of zinc and cadmium are tetrameric in solution (and possibly 
also in the vapour phase) %ith a suggested cubane structure; we undertook ex- 
periments to investigate the coordination chemistry of mercury in its hitherto 
unknownphosphine imide complexes. 

Results tid discussion 

Of the reactions shown in the scheme, we have tried (A) wi&hout success; 
reactions of RHgN; in molten PPh3 or pure, liquid P(NMe* )3 in evacuated 
s@ed CariuS tubes at elevated temperatures for several hours led to comp!ete 
dedompos@ion of the mercurials [13] : 

~J%Pb 
R3P 
- Hg-metal + Dec. products (1) 
Twac. 

Reaction (B), which occurs only with strong acids for & Hg (cleavage of 
an aryl-mercury bond being easier than that of an alkyl-mercury bond) also 
failed: 

I& Hg + HLNiP(N& )3. 2 No reaction (2) 
.- _lfir&m.amm ations of organometalhc amides with phosphine imides accord- 

ing to reaction (C), have been used for the synthesis of (organotin)ph&@rine~ 
imides [14] ; the following reaction sequence (3) led to successful preparation 
of the first organomercury phosphine imide. 

Mea SiN3 ,+ P(NMe*-1); + .Me, Si%=P(NMe, )3 + Nz 

Me, SiN=P(NMq )3 + i-C, H, OH 5 Me, SiO-i-C3 H, + HN=P(NMez )3 

M~HgN(&&, j,i $ HN=P(NMe- ) 2 3 -+ MeHgN=P(NM% )$ + HN(SiMe, )*.. (3) 
-- ‘(I) ~_. -. : 

:- ;-$&@p&& (Ii~~~~d~~ed.as.acolo~less liq&i,b.p. 68-70"/~.0~ mti 
m-a S:CIT?, yiekli the_ com‘&und c&@&s at about 3o-;T35q, and & senti& 
-~~@~cjip~@iL .The.~nible&l%we$ht m benzen& solution corresponds with the’ 
monomerF, co-&&c~ T(i). ii; &&ay Soluble :in.a_ &jety .&f ~iganicso~*ents; but : 

~xyith~&li@ij%t,@ hydro&rb&s reaction occ& The st&c?Gometry was e&b-- 
lished-b$ elkmen@-qnalyi? &d-by spkctroscopic methods.. -.. 1. 
-:; ; _. ~ ~ - ;_. : _ 

_‘.--1 _. . . .. . . . ... . . ,_ 
-.r I..- -_ ;.,‘- _.-... ‘_ : _... .: ._ : .- 
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S%ns : -o.LBppm 

J%ctl : lLS.Hr 

dW% : -2.sc ppm 

.I “PNC~ : 9Hz 

Fig. 1. lH NMR spectrum of MeHgN=P(NMe2)3 (I)_ 

(a)_ ‘HNMR spectrum 
The ’ H NMR spectrum in benzene solution, with the correct integration 

(l/6) is shown in Fig. 1. Spin-cotipling of N-methyl protons with 31 P gives rise 
to a doublet, which is shifted 0.07 ppm downfield compared to P(NMe, )3 with 
6 -2.43 ppm. Spin coupling of metal-methyl protons with 1” Hg produces 
satellite signals with J( lgg l%g-CH) 140 Hz; this agrees closely with cotiespondiug 
values for other covalent Hg-N-compounds 143. No indication is found for the 
dimeric &ucture (R, P=N-R’), in solution: In this case evidence for an 
X, AA’% -spin system should be .provided by the ’ H NMR spectrum, as shown 
by Sehmidbaur et al. 1161 for compounds of the type (Me3 P=NAR2 )Z. 

The 31P NMR chemical shift of -33.5 ppm (H3POs-external standard) 
is in the range reported for four-cotirdinated phosphorus compounds P(N)4 
[17,18]. 

(b). Mass spectrum 
In the mass spectrum of (I) shown in Fig. 2, the formation of almost all 

fragments can be explained in terms of the metastable transitions list+ in 
Table 1. With maximum amplification, peaks are obser& in the high mass 
region from m/e 400 to 780, but there is considerable doubt whether these 
fragments arise from dinierk (or oligomeric) species of from.decomposition 
products. 

(c). IR and Raman speci-ra 
IR and Raman spec+a (includin$j a polarized spe&um) of %h& neat &id- 

are shown in Fig. 3, and tentative assignments are made in,Table. 2. .. . . .. 
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CH#&N=P[N(Ck@& 

Hw. 3% 1 2o2 Hgl 

Fig. 2. +ss spectrum of (I) at 70 eV. 

The spectroscopic equipment used has been described elsewhere 131. Ele- 
mental analysis was performed by A. Bernhard& Analytical Laboratory, 5251 
Elbach iiberEngelsk&hen, GFR. Me3 SiN3, P(NMe2 )3 and MeXgN(SiMe, )z 
were prepared by published procedures. 

;a).‘ke,-dT=~NMt?, )3 
-Me3 &I,. (30.8 g, 0131 mole) was added dropwise to ea. 60 ml (excess) 

P(NM& )3 in a 106.ml fla&eqnippedvvith magnetic stirrer and condenser; the 
coJourless ,precipitate initially formed gradually dissolved with evolution of 
mtroge&‘&ter addition of the azide, stirring was continued for 3 h, and 
the m&u&checked f&r azide-absorptions by LB. P(NM& )3. was removed in 
ticuo and-the &Iy residue distilled, yielding a colourless; mo&&ur&sensitive 

.:liquid; b& 95*70/0.1 mm. .Yield 55 g (82%). The product was identified by 
analysis,~LR, 1 H NMB, and rn+ spe&r?scopy.. _ 

. . . ._ .-.. .- 
‘_ .‘.. ‘. _. 

qllJ.J~l ,:.-: ._, y: ...‘. -. : : 

M,E~ASTAB~~~TR~AbYSITIoNS IN THE MASS SPEC’+tUM OF MeHgN=P(NMep)s (I) . . ” : 

_+j&,f .:._.-.- .. 379 -+ 177 
lQ2.6.. 177 -+ 136 
269:: I ^ ‘. 

‘312 .; :,. . . -1, _: :: .- : .’ 
379 + 397 

369: -.:. ; __.:- : 
394-, 349 _ 

: _.:_ .-. .- ; : : :‘. -- ,394-,379”. 
‘. 
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Fig.3.1RaudRamanspectraof<I). 

TABLE2 

IRANDRAMAN SPECTRAOFM~I-I~N=P(NM~~)~(C~-~) 

Raman IR Azsigument 

3400 w 
3000m 
2930vs 
289Ovs 
2840%'~ 
2800m I 

1480~ 
1450w 
144ow 
1410vw 

1290vw 

111Om 

960%-w 

820~~ 

72ovw 

630s 625x1~ 

57Om-w V(Ei8-N) 

49ovw 475m 
350w 

2990 s 

28709 
2838s 
2790s 

I 
1480m-w 
1460m @r,sh) 

1416vw I 

1285m-e 

12OOm--s 
-1165m 
1146m 
1112m 
1060~ 

I- 
975s 
960s I 

870~~ 
840~~ 
825~~ 
775w I 

720s 

660~~1 

“as. V&+-H) 

6,(CH3) 

v(p=N) 

6&=3) . 

. . 



'&).m~&~~~ti~~j~ 
MeHgN(SiMe& (6-i g, 16.2 mmole) and 2.9 g (16.2 mmole) HN=P(NM@)3 

were heated from. 60-90” for 3 h; evaporation-of volatile compounds and distiI- 
lation yie&ed a Colourless liquid,‘b.p. 68L700 /O.Ol mm, which:crystallized at 

-room,timperature. Yield 5.8. g (92%): (Found: C, 21.43; H, 5.87; N, 14.06; Hg; 
50.68. Mol. wt. (cryoscopically in benzene solution), 334 and 356. Calcd.: 
C,_21;41; H, 5.35; N, 14.20; Hg, 51.00%. Mol. wt., 392:) 
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